تأثير إستخدام جهاز الأيزوكيتنك على تطوير عزم القوة لعضلات المركز
وأداء مهارة الضرب الساحق للاعب الكرة الطائرة

أ.م.د/ محمد منير عطية محمد

المقدمة ومشكلة البحث:

أن الأداء في كل الأنشطة الرياضية يعتمد على كيفية تحرك الجسم، فالعضلات التي تتحكم في حركة الجسم بالانقباض والانبساط لجنب الأطراف من موضوع أخر ولما كانت العضلات قوية كلما كانت هذه الانقباضات أكثر فعالية وبالتالي كانت الحركة أقوى، فأسلوب الأيزوكيتنك هو أحد أساليب القياس والتدريب وقد أصبح التدريب الأيزوكيتنك أكثر شعبية في الحقبة الأخيرة من القرن الماضي وذلك لأنه يعتبر من الأساليب المستحدثة في عملية تقييم الأداء العضلي الخاص بالقوة العضلية، مما يجعل هذا الأسلوب من أكثر الأساليب تجارة مع المهارات الرياضية الخاصة.

ويعد التدريب الأيزوكيتنكي من الأنقباضات العضلية التي تعتمد في عملها على أجهزة خاصة، حيث صممت تلك الأجهزة بأمكانيات تكنولوجيا عالية لتحكم في بعض الأمور الخاصة بأداء اللاعب عند الانقباض العضلي كسرعة حركة الأنباض، وشدة تكرار ووقت زمن المثير مع تحكم في تدفق وتغيير زاوي المفصل التي تعمل عليها العضلات، والتي تأخذ جزء من شكل المهارة المراد تطويرها، وعلى ذلك يمكن برامج تلك الأجهزة مع التحكم في تشغيلها حسب الحاجة مع ضبط وتثبيت المقاومة المناسبة. (4: (118)

ويؤكد حلقة حسام (2014م) أن التدريب الأيزوكيتنكي يتيح للعضلات فرصة العمل بأقصى قدرة إنقباضها لها في جميع مراحل أداء التمرين، وهو ما يحقق أي نوع من أنواع التدريب الأخرى (7: (247)

ويشير السيد عبد الفقود (1997م) أنه يتم في التدريب الأيزوكيتنكي تجنب الجوانب السلبية الموجودة في كل التدريب المتحرك وتدريب البقية الذي يجمع بين التحرك والثبات، ونجد أن هذا النوع من التدريب عبارة عن شكل خاص لقطة استعماله على التمرينات التأهيلية في فترات سابقة، وما هو الأمر الحاسم في هذا الخصوص إمكانية التكيف مع كل مقاومة، حيث نجد что يحدث في هذا الخصوص عن تمرينات التكيف مع المقاومة (ARE) أن بيرون Perine

التي تحدث في هذا الخصوص عن تمرينات التكيف مع المقاومة

حيث يتم في هذا النوع من التدريب من accommodating، resistance، exercise

خلال استخدام أقصى قدر من القوة للاعب أثناء كافة المسار الحركي المسار الحركي. (2: (189)
ويذكر عبد العزيز النمر وناريمان الخطيب (1977م) أن التدريب بسرعة زاوية ثابتة يتطلب أن يقلل الفرد ضد حاجز صمم خصيصاً للتحكم في سرعة واتجاه الحركة المطلوبة أثناء التدريب بالإضافة إلى أن يغير المقاومة خلال المدى الحركي الكامل للحركة، وفي هذه الحالة يجب استخدام التدريب إلى النصف للقدرة بالإضافة إلى استخدام التدريب إلى النصف للقدرة أثناء الإدراك في النشاط الرياضي الممارس مع إعطاء أغلب الطلب في البداية الضعيفة والمباشرة (9/6).

ويشير السيد عبد العصام العمود (1997م) أن التدريب الأولي للاذن بالكم يعتمد على أن يكون على مستوى المستوى المطلوب، حيث يظل مستوى المستوى المطلوب ثابتًا على مدار السمسار الحركي مما يؤدي أيضًا إلى ثبات السرعة، وذلك تضمن التدريب الأيزوكيتاني حدث أقصى مستوى توتر عضلي طوال الأداء الحركي (290)。

ويذكر مسعود على محمود (2003م) أن التدريبات الخاصة تمثل أهمية كبيرة في تحقيق الأداء المثالي لللاذن، كما يجب أن يحقق التدريب مع السمسار الحركي للهواة المدربين وفهمها والكشف عنها في البداية الضعيفة والمباشرة (9/6).

ويشير السيد عبد الناصر العمود (1997م) أن التدريبات الخاصة والمعرفة بالتدريبات المتكاملة، والتي تستخدم في تدريب الكونتيك، وهي تشمل مراحل من الحركات فقط، حيث تطبق التدريبات الخاصة في منحى (السما - الزمن - المساحة) إنشاء المسارات والاقتران المستخدمين في تدريبات النشاط الرياضي الممارس. وتوجه إلى تلك المجموعات العضلية التي تقوم بالعمل الرئيسي (2/6).

ويشير "أنسي هادي رضوي" (2004م) أن أسلوب الأيزوكيتاني هو أسلوب القياس والتدريب، وقد أصبح التدريب الأيزوكيتاني أكثر شيوعًا في الحقيقة الأخيرة من القرن الماضي وذلك لأنه يعتبر من الأسلوب الذي يتم استخدامه في عملية تفعيل الأداء العضلي ل好事 السما - الزمن - المساحة، مما يجعله هذا الأسلوب أكثر الأسلوبات تجاوزاً مع المكتبة الرياضية الخاصة (6/128).

ومع ذلك ما سبق وبعد مقاييس البحث على العديد من المراجع العلمية التي تناولت البحث والدراسة البرامج التدريبية الخاصة بالقوة العضلية خاصة بالمركز المركزي لللاذن، ودورها في تحقيق عملية التدريب القديم للمركز الحركي الحركي في الحركة السما - الزمن - المساء، وعند معرفة المدربين بأساليب القوة المستخدمة التي تمثل على حال المشكلة الأساسية التي يتم توضحها في مفهوم التدريبات القوة التقليدية كالأقسام، والمتممة في عدم انضمة النقل المستخدم في التدريب لتحقيق الأثر العضلي بالدرجة القصوى طوال السما الحركي للحركة المركزية للمركب النحاس الأذن، حيث أن الفرد المدرب لأذن الحركة يكون أكثر قدرة على إجراء القوة كلاً أقربت الحركة المركزية من نهايتها.

ومع هذا تلقت مشكلة هذا البحث من خلال تصميم برنامج تدريب بأسلوب الأيزوكيتاني لتطوير عزم القوة لعمر السما - الزمن - المساء للمركز الحركي للحركة الطائرة، وتم دفع الاباحي باستخدام التدريب الأيزوكيتاني.
أهداف البحث:

يهدف البحث إلى تصميم برنامج باستخدام جهاز الابزوكنينتكي للتبغر على تأثير التدريب
الأيزوكنينتكي على تطور عزم القوة لعوامل المركز وأداء مهارة الضرب الساحق لاعبي
الكرة الطائرة

فرض البحث:

- توجد فروق ذات دلالة إحصائية بين متوسط درجات القياس القبلي وكلاً من متوسط درجات
القياس البيئي ومتوسط درجات القياس البدئي في القياسات الأيزوكنينتكيه في البحث.
- توجد فروق ذات دلالة إحصائية بين متوسط درجات القياس القبلي وكلاً من متوسط درجات
القياس البيئي ومتوسط درجات القياس البدئي في القياسات المهرة في البحث.
- توجد نسب تحسين بين متوسط درجات القياس القبلي والبيئي والبدئي لصالح القياس البدئي في
القياسات الأيزوكنينتكيه والقياسات المهرة.

مصطلحات البحث:

جهاز الأيزوكنتينتكي (32):

جهاز صمم خصيصاً للتحكم في سرعة وزاوية الحركة المطلوبة من المفصل أثناء التدريب.

التدريب الأيزوكنينتكي:

هو نوع من التمرين الذي يتم تنفيذه بواسطة أجهزة خاصة، ولذلك فإن سرعة الأداء سوف تبقى
ثابتة فيما بدل الممارس من قوة ووجه، لذلك فإن سرعة الحركة سوف تبقى ثابتة أيضاً. إن مثل
هذه الأجهزة تم تطويرها لأجل تحسين القوة العضلية وتحمل القوة وقياسها أيضاً وخاصة بعد
الإصابات للتأهيل الرياضي (32).

العضلات القابضة (المحركة):

هي العضلة المسولة عن إنتاج الحركة بشكل مباشر ، بمعنى آخر أنه بدون هذه العضلة لا
يمكن إنجاز الحركة المطلوبة. (11 : 53)

Antagonist muscles (القابلة):

هي العضلات التي تعمل على الاتجاه المعاكس للاتجاه الذي تعمل عليه العضلات المحركة
عند حركة القلب ، مثلاً تكون العضلة القابضة هي المحركة في حين تكون العضلة الباسطة في
نفس المفصل هي العضلات المقابلة.

ووظيفة العضلات المقابلة هي إيقاف الحركة عند نهاية المدى الحركي (خاصة الحركات التي
تؤدي بعنف) مما يساعد على حماية المفصل. (11 : 202)

* تعريف اجراتي
ذروة عزم الدوران (أقصى قوة): Peak Torque

هو عبارة عن أعلى إنتاج لقوة العضلات في أي لحظة خلال التكرار ويدل على قدرة قوة العضلة وتقاس بالنيوتن على المتر. (٢٧ : ١٧)

Peak Torque body weight

ذروة عزم الدوران بالنسبة لوزن الجسم

هي عبارة عن أقصى قوة تنتجها العضلة بالنسبة لوزن الجسم وتمثل بالنسبة المنوية (٢٧ : ٣٠)

طرق وإجراءات البحث:

منهج البحث:

تم استخدام المنهج التجريبي بالتصميم التجريبي لمجموعة واحدة باستخدام القياس القبلي والبياني والبعدي.

مجتمع وعينة البحث:

يشمل مجتمع البحث لاعبي الكرة الطائرة بمحافظة القليوبية والمسجلين بالاتحاد المصري لكرة الطائرة موسم ٢٠٠٩ – ٢٠١١ وتم اختيار عينة البحث بطريقة العمودية من لاعبي الكرة الطائرة بنادي بنها الرياضي للدرجة الأولى ممتاز(ب) والبالغ عددهم (٣) لاعبين وعدد (٩) لاعبين تم استخدامهم في الدراسة الاستطلاعية وذلك من حجم العينة الإجمالي والبالغ عددهم (٨) لاعبين.

جداول أفراد عينة البحث:

قام الباحث بتجنيد لأفراد عينة البحث في المتغيرات التالية وهي كما يلي:

جدول (١)

التصنيف الإحصائي لعينة البحث في (السن – الطول – الوزن – العمر التدريبي)

ن = ٦

<table>
<thead>
<tr>
<th>المتغيرات</th>
<th>الوسط</th>
<th>القياس الحسابي</th>
<th>الاحراف المعياري</th>
<th>معامل الاتنواء</th>
</tr>
</thead>
<tbody>
<tr>
<td>السنة</td>
<td>٢٠٧</td>
<td>١٧٨.٧</td>
<td>٣.٥</td>
<td>١.٣٠</td>
</tr>
<tr>
<td>سم</td>
<td>١٨٦.٤</td>
<td>١٨٣.٢</td>
<td>٣.٨</td>
<td>٠.٦٠</td>
</tr>
<tr>
<td>كجم</td>
<td>٧٣.٤</td>
<td>٧٣.٢</td>
<td>٠.٨</td>
<td>٠.٦٤</td>
</tr>
<tr>
<td>السنة</td>
<td>٨.٥٤</td>
<td>٨.٤٨</td>
<td>٠.٨٤</td>
<td>١.٣٥</td>
</tr>
<tr>
<td>العمر التدريبي</td>
<td>٣.٥</td>
<td>٣.٥</td>
<td>٠.٤</td>
<td>٠.٢٤</td>
</tr>
</tbody>
</table>

يتبين من الجدول (١) أن قيم معاملات الاتنواء في المتغيرات التانيس (السن – الطول – الوزن – العمر التدريبي) قد تراوحت ما بين (٠.٦٠ : ١.٣٠) وهي قيم أقل من (٣) وتقع تحت المنحنى الاعتيادي مما يشير إلى تجانس أفراد عينة البحث في المتغيرات المختارة والتي يمكن أن تؤثر في قيمة المتغيرات المعنية.
|| المتغيرات | القيم الحسابية | الوسط | الانحراف المعياري |
|---|---|---|---|
| عزم القبض | 159.5 نيوتن | 29.3 | 0.76 |
| عزم البسط | 4.98 نيوتن | 14.09 | 0.32 |
| عزم بالنسبة لوزن الجسم قبض | 218.82 نيوتن | 12.00 | 0.73 |
| عزم بالنسبة لوزن الجسم بسط | 150.78 نيوتن | 12.45 | 0.60 |
| الوزن الجول | 37.57 | 2.58 | 0.14 |
| العضلة | 158.70 | 24.47 | 0.57 |
| المدى الحركي | 14.47 | 4.28 | 0.95 |
| درجة | 24.12 | 4.19 | 0.211 |

تقتض مختارة هذه الأدوات والأجهزة والاختبارات التي تتناسب مع طبيعة وأهداف البحث. العمل داخل التطبيق العملي لتجربة البحث. أولاً: الوسائل والأدوات:

- جهاز الرستاميتر لقياس الطول الكلي للجسم
- جهاز الرستاميتر لقياس الوزن
- جهاز Iso Kinetic Dynamometer (muscle performance testing)
- ساعة إيقاف
- جهاز لقياس الأداء العضلي مزود بجهاز كمبيوتر وشاشة وطابعة

ويشير لي بورن (Lee E. Brown) (2000م) أن آجهزة الإيزوكنتيك تتطلب أن يعمل اللاعب ضد جهاز مصمم خصيصاً للتحكم في سرعة وزاوية الحركة المطلوبة، فبه تفعل العضلات بحداها الأقصى خلال المدى الكامل لحركة الفصل مع التحكم في سرعة الأطياف وقوته (20:3)
第二节: الاختبارات المستخدمة في البحث:
اختبار مهارة الضرب الساحق. مرفق (3)

الدراسة الاستطلاعية:
قام الباحث (1) بدراسة استطلاعية، يوم السبت الموافق ٠٠٠٠/٧/٢٢م على
العينة الاستطلاعية وعددهم (٢) من خارج العينة الأساسية واستهدفت هذه الدراسة تأكيد من
صلاحية الأدوات والأجهزة المستخدمة وكذلك تقنين الأدوات التدريبية الخاصة بجهز الآزوكينتك
من خلال مغتيراته.

التجربة الأساسية:
بعد أن قام الباحث بالدراسة الاستطلاعية وما ألت إليه من نتائج قام بإجراء الدراسة الأساسية من
يوم السبت الموافق ٠٠٠٠/٧/١٢ وحالي يوم الخميس الموافق الأربعاء ٠٠٠٠/٦/٨٩م ولمدة (٢) أسابيع
وقد أجريت على النحو التالي:
أولا: القياسات الفقيلة:
تم إجراء القياسات الفقيلة لأفراد عينة البحث الأساسية خلال يومي ٢٦/٧ /٢٢م
واقتمل على
اليوم الأول: القياسات الإيازوكينتية (ذروة عزم الدوران - عزم الدوران بالنسبة للجسم -
الشغل - المدى الحركي) تم اختيار تلك المتغيرات بناءً على المراحل الحركية
لمهارة والتي أوضح دور الفرق الحركي الذي يتم من خلال عضلات المركز
اليوم الثاني: القياس المهاري (مهارة الضرب الساحق)
ثانيا: الدراسة الأساسية:
خطوات تصميم البرنامج باستخدام جهاز الآزوكينتك:
اتبع الباحث الخطوات التالية عند تصميم البرنامج التدريبي:
أساس ومعايير بناء البرنامج:
- توافق عوامل الأمن والسلامة.
- أن يكون محتوى البرنامج مناسبًا لعامة وخصائص المرحلة السنية فئة البحث.
- أن يكون البرنامج متكاملاً خلال مراحله المختلفة.
- مراجعة البرنامج الفروق الفردية.
- مراجعة مبدأ التموج في درجة الحمل.
- مرواية البرنامج وقبوله للتطبيق العملي.

التعليمات المتصلة لاستعمال الجهاز:
- التأكد من وضعية الجهاز بما يتماشى مع العمل العضلي لعضلات المركز.
- تتبين ظهور المعد للوصفة الميدانية.
- لكي يتم لف المعد في الاتجاه المعاكس يتم فصل الجزء السفلي من ظهور المعد فقط.
- يتم ضبط وضعية اللاعب عن طريق ارتفاع وضعية المعد.
Operating:

الاحتياجات من أجل التدريب الأمن للجهاز:
- أن يتم تحت إشراف متخصص وليس باستخدام الفرد نفسه.
- تحديد المدى الحركي مسبقاً للاعب قبل البدء في التدريب.
- في حالة تعدي اللاعب المدى الحركي المحدد له مسبقاً يقوم الجهاز تلقائياً بإيقاف نفسه.
- ضرورة معرفة اللاعب بوضوح استخدام مفتاح التوقف التقليدي.
- أثناء التدريب التأكد من الوضعية الصحيحة لللاعب و قدرته على اكمال المدى الحركي المنشود به.
- الغرفة التي يوجد بها الجهاز يجب أن تكون خالية من أي جهاز آخر وأيضاً من أي أفراد.
- يتم استخدام الجهاز بالطاقة المقدرة له.

geting Started:

بداية العمل:

الخطوة الأولى:

Hardware Requirements

requirements

Windows 10
Processor p4
Ram 512 meg
Printer

CD RW
COM Ports
USB Ports

الخطوة الثانية:

Protocol Definition

تعريف البروتوكول

من خلال شاشة تعريف البروتوكول قام الباحث بإدخال البيانات الخاصة باللاعب والتي تتمثل في:

(GENDER (ذكر – أنثى))
(NAME)
(INVOLVED SIDE)
(WEIGHT)
(الهوية)

ثم يتم تحديد نظام العمل Select Protocol

العمل عليه وأيضاً تحديد نوع الأنقاض (مركزى او لامركزى او الآثرين معا) والذي من خلاله يتم تحديد سرعة الزاوية والتي قد تبدأ من (0% – 150%) بناء على تحليل الدراسات التي استخدمت جهاز الأيزوكينت وكالتي أشارت إليها المراجع العلمية والدراسات السابقة والتي منها Call- Ambrosio,FM,at (1994م) (11) كمال وآخرون
Rowinski M (1994م) (12) دراسة "رونسكي و ماجكوري
Benzoor M & et al (1996م) (5) "جريبينر وجزيروسك
& Mcgorry R delitto a, & crandell C C (1992م) "Jeziorowski J
Grabiner M & et al (1990م) (16)."
مجلة علوم الرياضة

الملف الثالثة:
تحديد المدى الحركي للجذع:

Setting Range of motion

يتم وضع اللاعب في الوضع التشريحي المناسب للديناموميتر (محور الارتكاز) لضبط ذراع اللاعب في المكان المناسب.

- يتم تحديد اتجاه الحركة وتحديد المدى الحركي الخاص باللاعب (Toward) و (Away).

الأسس التي قام الباحث بمراعاتها عند تطبيق التجربة:
- خصائص الحمل الموجه إلى تطوير العملى العضلي لعكبات المركز باستخدام جهاز الأليكوينت:

طبق البرنامج في معمل تقييم الأداء البدني والتدريب الأليكوينتي بكلية التربية الرياضية – جامعة بنها يوفق 3 مرات أسبوعيا لمدة 6 أسابيع، وبناء على ذلك يصبح عدد الوحدات التدريبية 18 وحدة تدريبية، وقد تم التدرج بالسرعة خلال البرنامج.

- تم تنفيذ الأحماء في الوحدات التدريبية على خارج الجهاز وعلى الجهاز والذي احتوى على تدريبات تسمح في رفع درجة حرارة الجسم وتهيئة العضلات العامة لعضلات المركز.
- تم تنفيذ الجزء الرئيسي والذي ا türlü على تدريبات الأعداد العام لمجموعة البحث والذي استهدف محاولة معظم اجزاء الجسم باستخدام طريقة التدريب الفترية.
- تم تطبيق المتغير التجريبي (تدريب الأليكوينتي) في جزء الأعداد الخاص من الوحدة التدريبية لعينة البحث الأساسية.

وتم تنفيذ الجزء الخاص بالتدريب والذي يحتوي على تمرينات تساهم في استعادة الشفاء مثل المرجحات والاطلالات بعد نزول اللاعب من على الجهاز.

<table>
<thead>
<tr>
<th>Week (1 – 4)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Iso kinetic unilateral</td>
</tr>
<tr>
<td>Unit</td>
<td>1</td>
</tr>
<tr>
<td>Velocity (/s)</td>
<td>30</td>
</tr>
<tr>
<td>R O M</td>
<td>Full rang</td>
</tr>
<tr>
<td>Repetitions</td>
<td>8</td>
</tr>
<tr>
<td>Rest time (s)</td>
<td>1.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week (4 – 3)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Iso kinetic unilateral</td>
</tr>
<tr>
<td>Unit</td>
<td>1</td>
</tr>
<tr>
<td>Velocity (/s)</td>
<td>60</td>
</tr>
<tr>
<td>R O M</td>
<td>Full rang</td>
</tr>
<tr>
<td>Repetitions</td>
<td>8</td>
</tr>
<tr>
<td>Rest time (s)</td>
<td>1.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week (3 – 6)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Iso kinetic unilateral</td>
</tr>
<tr>
<td>Unit</td>
<td>1</td>
</tr>
<tr>
<td>Velocity (/s)</td>
<td>90</td>
</tr>
<tr>
<td>R O M</td>
<td>Full rang</td>
</tr>
<tr>
<td>Repetitions</td>
<td>10</td>
</tr>
<tr>
<td>Rest time (s)</td>
<td>1</td>
</tr>
</tbody>
</table>
التوزيع الزمني لمحوري متغيرات البرنامج التدريبي باستخدام جهاز الأيزوكينتيك. مرفق (4)

القياسات البعيدة:
تم إجراء القياسات البعيدة لأفراد عينة البحث الأساسية في المتغيرات المستخدمة في البحث.

المعالجة الإحصائية:
استخدم الباحث في معالجته الإحصائية لبيانات الطرق الإحصائية التالية:
- الوسيط
- المتوسط الحسابي.
- الانحراف المعياري.
- تحليل التباين
- حساب أقل فرق معنوي (T).
- اختبار (T).

عرض النتائج ونقاشاتها:

من خلال عوامل الدراسة ولهذه واستنادا إلى نتائج التحليل الإحصائي تم عرض نتائج البحث من خلال الجداول التالية:

جدول (3)

تحليل التباين لعينة الدراسة

<table>
<thead>
<tr>
<th>مصدر التباين</th>
<th>جدول حرية</th>
<th>درجة حرية</th>
<th>مجموع المربعات</th>
<th>مربعات المجموع</th>
<th>مجموع القيم المعدل</th>
<th>المتغيرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>عزم الدوران قياسي</td>
<td>1</td>
<td>0.94</td>
<td>4.40</td>
<td>3.77</td>
<td>0.94</td>
<td>عزم الدوران قياسي</td>
</tr>
<tr>
<td>عزم الدوران بسط</td>
<td>1</td>
<td>0.94</td>
<td>4.40</td>
<td>3.77</td>
<td>0.94</td>
<td>عزم الدوران بسط</td>
</tr>
<tr>
<td>عزم الدوران بالنسبة للجسم</td>
<td>1</td>
<td>0.94</td>
<td>4.40</td>
<td>3.77</td>
<td>0.94</td>
<td>عزم الدوران بالنسبة للجسم</td>
</tr>
<tr>
<td>الشكل قياسي</td>
<td>1</td>
<td>0.94</td>
<td>4.40</td>
<td>3.77</td>
<td>0.94</td>
<td>الشكل قياسي</td>
</tr>
<tr>
<td>الشكل بسط</td>
<td>1</td>
<td>0.94</td>
<td>4.40</td>
<td>3.77</td>
<td>0.94</td>
<td>الشكل بسط</td>
</tr>
<tr>
<td>المدى الحركي</td>
<td>1</td>
<td>0.94</td>
<td>4.40</td>
<td>3.77</td>
<td>0.94</td>
<td>المدى الحركي</td>
</tr>
<tr>
<td>اختبار الضرب الساقط من مركز L.S.D</td>
<td>1</td>
<td>0.94</td>
<td>4.40</td>
<td>3.77</td>
<td>0.94</td>
<td>اختبار الضرب الساقط من مركز L.S.D</td>
</tr>
</tbody>
</table>

يوضح من الجدول رقم (3) وجود فروق ذات دلالة إحصائية عند مستوى معنوي (0.05) بين القياسات المختلفة، حيث أن قيمة ف المحسوبة أكبر من قيمة F الفردية في المتغيرات في الدراسة الذي سوف يقوم الباحث بتوجيه الفرق من طريق حساب أقل فرق معنوي (S.D)
الفرق بين متوسطات القياسات المختلفة للمجموعة قيد البحث

<table>
<thead>
<tr>
<th>المتغيرات</th>
<th>القياسات</th>
<th>جلبي</th>
<th>عزوم الدوران قبض</th>
<th>جلبي</th>
<th>عزوم الدوران بسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>عزوم الدوران بال نسبة للجسم قبض</td>
<td>جلبي</td>
<td>17.5</td>
<td>159.5</td>
<td>قبض</td>
<td>177.0</td>
</tr>
<tr>
<td>تعتبر ل بعد</td>
<td>بيين</td>
<td>206.4</td>
<td>29.4</td>
<td>بيين</td>
<td>4.9</td>
</tr>
<tr>
<td>عزوم الدوران بال نسبة للجسم بسط</td>
<td>جلبي</td>
<td>31.6</td>
<td>105.0</td>
<td>قبض</td>
<td>136.7</td>
</tr>
<tr>
<td>تعتبر ل بعد</td>
<td>بيين</td>
<td>154.0</td>
<td>17.9</td>
<td>بيين</td>
<td>6.5</td>
</tr>
<tr>
<td>العضلة قبض</td>
<td>جلبي</td>
<td>266.7</td>
<td>218.8</td>
<td>قبض</td>
<td>245.4</td>
</tr>
<tr>
<td>تعتبر ل بعد</td>
<td>بيين</td>
<td>293.8</td>
<td>38.4</td>
<td>بيين</td>
<td>9.6</td>
</tr>
<tr>
<td>العضلة بسط</td>
<td>جلبي</td>
<td>300.5</td>
<td>195.9</td>
<td>قبض</td>
<td>276.4</td>
</tr>
<tr>
<td>تعتبر ل بعد</td>
<td>بيين</td>
<td>263.8</td>
<td>49.9</td>
<td>بيين</td>
<td>12.3</td>
</tr>
<tr>
<td>العضلة الحركي</td>
<td>جلبي</td>
<td>268.3</td>
<td>207.6</td>
<td>قبض</td>
<td>234.6</td>
</tr>
<tr>
<td>تعتبر ل بعد</td>
<td>بيين</td>
<td>334.8</td>
<td>34.5</td>
<td>بيين</td>
<td>11.3</td>
</tr>
<tr>
<td>اختبار الضرب الساحق من مركز (4) في مركز (1)</td>
<td>جلبي</td>
<td>201.8</td>
<td>144.7</td>
<td>قبض</td>
<td>135.3</td>
</tr>
<tr>
<td>تعتبر ل بعد</td>
<td>بيين</td>
<td>20.8</td>
<td>11.6</td>
<td>بيين</td>
<td>3.5</td>
</tr>
</tbody>
</table>

يتضح من الجدول رقم (4) وجود فرق ذات دلالة إحصائية بين متوسط درجات القياس الجلبي لعينة البحث وكل من متوسطات القياسات البينى والقياس البعدي وذلك في المتغيرات الأساسية لصالح القياسات البعدية.
جدول (5)
الفرق بين متوسطات القياسين القبلي والبيني

<table>
<thead>
<tr>
<th>عدد النظرات</th>
<th>نسبة التغير</th>
<th>قيمة المتغير</th>
<th>القيمة القبلي</th>
<th>القيمة البيني</th>
<th>المتغير المجهول</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.97</td>
<td>1.09</td>
<td>29.0</td>
<td>177.0</td>
<td>159.5</td>
</tr>
<tr>
<td>2</td>
<td>37.09</td>
<td>2.04</td>
<td>123.6</td>
<td>159.0</td>
<td>105.5</td>
</tr>
<tr>
<td>3</td>
<td>12.10</td>
<td>2.77</td>
<td>34.0</td>
<td>12.4</td>
<td>218.8</td>
</tr>
<tr>
<td>4</td>
<td>41.08</td>
<td>4.83</td>
<td>9.24</td>
<td>266.42</td>
<td>159.9</td>
</tr>
<tr>
<td>5</td>
<td>6.77</td>
<td>8.39</td>
<td>5.51</td>
<td>32.8.5</td>
<td>30.7.2</td>
</tr>
<tr>
<td>6</td>
<td>34.37</td>
<td>16.12</td>
<td>33.1</td>
<td>31.27</td>
<td>158.7</td>
</tr>
<tr>
<td>7</td>
<td>18.20</td>
<td>5.87</td>
<td>7.43</td>
<td>130.35</td>
<td>114.57</td>
</tr>
<tr>
<td>8</td>
<td>37.27</td>
<td>3.53</td>
<td>2.49</td>
<td>21.13</td>
<td>24.16</td>
</tr>
</tbody>
</table>

يوضح جدول (5) النسبة المنوية للتحسين بين القياسين القبلي والبيني في نتائج قياس المتغيرات في الدراسة لأفراد عينة البحث، حيث يتضح من الجدول أن هناك تباين في نسب التغير المنوية بين القياسين القبلي والبيني، حيث تراوحت نسبة التحسن ما بين (77.7%)، (81.5%).
الفرق بين متوسطات القياسين القبلي والبديل للمتغيرات في البحث لعينة البحث

<table>
<thead>
<tr>
<th>المتغير المذكور</th>
<th>القبلي</th>
<th>البديل</th>
</tr>
</thead>
<tbody>
<tr>
<td>عزم الدوران قبض</td>
<td>27.7</td>
<td>26.3</td>
</tr>
<tr>
<td>عزم الدوران بسط</td>
<td>37.4</td>
<td>19.5</td>
</tr>
<tr>
<td>عزم الدوران بالنسبة للجسم قبض</td>
<td>283.8</td>
<td>120.9</td>
</tr>
<tr>
<td>عزم الدوران بالنسبة للجسم بسط</td>
<td>218.8</td>
<td>109.9</td>
</tr>
<tr>
<td>الشمال قبض</td>
<td>9.1</td>
<td>10.6</td>
</tr>
<tr>
<td>الشمال بسط</td>
<td>34.3</td>
<td>34.5</td>
</tr>
<tr>
<td>المدى الحركي</td>
<td>146.75</td>
<td>114.4</td>
</tr>
<tr>
<td>اختبار الضرب الساحق من مركز</td>
<td>37.48</td>
<td>0.51</td>
</tr>
</tbody>
</table>

يوضح جدول (2) النسبة المنوية للتحسين بين القياس القبلي والبديل في نتائج قياس المتغيرات في البحث لأفراد عينة البحث، حيث يوضح من الجدول أن هناك تباين في نسب التغير المناوية بين القياسين القبلي والبديل، حيث تراوحت نسب التحسن ما بين (15.1\%) (58.7\%).
الفرق بين متوسطات القياسين البيئي والبعدي للمتغيرات قيد البحث لعينة البحث

<table>
<thead>
<tr>
<th>المتغير</th>
<th>البيئي</th>
<th>البعدي</th>
<th>الم叁</th>
<th>عدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>عزم الدورانQP</td>
<td>177.0</td>
<td>206.4</td>
<td>29.0</td>
<td>16</td>
</tr>
<tr>
<td>عزم الدورانB</td>
<td>126.6</td>
<td>154.5</td>
<td>23.7</td>
<td>12</td>
</tr>
<tr>
<td>عزم الدوران بالنسبة للجسم QP</td>
<td>245.4</td>
<td>283.8</td>
<td>12.4</td>
<td>15</td>
</tr>
<tr>
<td>عزم الدوران بالنسبة للجسم B</td>
<td>276.52</td>
<td>253.8</td>
<td>9.24</td>
<td>18</td>
</tr>
<tr>
<td>الشغل قبض</td>
<td>338.35</td>
<td>305.8</td>
<td>5.01</td>
<td>5</td>
</tr>
<tr>
<td>الشغل بسط</td>
<td>312.9</td>
<td>233.7</td>
<td>3.33</td>
<td>3</td>
</tr>
<tr>
<td>المدى الحركي</td>
<td>130.35</td>
<td>142.85</td>
<td>7.43</td>
<td>7</td>
</tr>
<tr>
<td>اختبار الضرب الساحق من مركز</td>
<td>0.02</td>
<td>37.74</td>
<td>31.63</td>
<td>1</td>
</tr>
<tr>
<td>اختبار الضرب في مركز</td>
<td>0.06</td>
<td>65.41</td>
<td>65.13</td>
<td>8</td>
</tr>
</tbody>
</table>

يوضح جدول (7) النسبة المنوية للتحسين بين القياس البيئي والبعدي في نتائج قياس المتغيرات قيد البحث لأفراد عينة البحث، حيث يضح من الجدول أن هناك تباين في نسب التغير المنوية بين القياسين البيئي والبعدي، حيث تراوحت نسبة التحسن ما بين (10.47% - 87.4%) مناقشة النتائج وتفسيرها:

ينصح من الجدول رقم (3) والخاص بتحليل التباين بين المتوسطات الحسابية لقياسات المختلفة لتغير (عزم الدوران قبض) لدى أفراد العينة قيد البحث أنه يوجد فروق دالة إحصائيًا بين القياسات حيث بلغت قيمة "F" المحاسبة (0.44)، ومتغير (عزم الدوران بسط) حيث بلغت قيمة "F" المحاسبة (7.49، وكذلك متغير (عزم الدوران بالنسبة للجسم قبض) حيث بلغت قيمة "F" المحاسبة (0.44)، وكذلك متغير (عزم الدوران بالنسبة للجسم بسط) حيث بلغت قيمة "F" المحاسبة (2.42، وكذلك متغير (الشغل قبض) حيث بلغت قيمة "F" المحاسبة (1.22، وكذلك متغير (الشغل بسط) حيث بلغت قيمة "F" المحاسبة (0.11)، وكذلك متغير (ال مدى الحركي) حيث بلغت قيمة "F" المحاسبة (0.32) وكذلك متغير (مستوى الآداء درجة) حيث بلغت قيمة "F" المحاسبة (0.32) وجمع القيم السابقة هو قيم أكبر من قيمة "F" الجدولية عند مستوى معنوية (0.05).

ويشير الباحث إلى أن تلك النتائج تدل على أن هناك تأثير إيجابي للتدريب الإيزوكينتاتيكى من الانقباضات العضلية التي تعتمد في عملها على أجهزة خاصة، مع تحكم في ثبات وتغيير زاوي المفصل التي تعمل عليها العضلات.
كما يتحصل من الجدول رقم (4) والخاص باقل فرق معنى بين متوسطات القياسات المختلفة أنه:

تتضح فرق دالة إحصاءيا بين متوسطات القياس البياني والبعدي في متوسط (عزم الدوران قبض) ولحلب كلا من متوسط القياس البياني والبعدي، ومعجم قيم هذه الفروق في قيم L.S.D أكبر من قيمة L.S.D المحسوبة والتي بلغت قيمتها (4.2)، مما ينصح وجود فرق دالة إحصائيا بين متوسط درجات القياس البياني والبعدي في متوسط (عزم الدوران قبض) ومعجم هذه الفروق هو قيم أكبر من قيمة L.S.D المحسوبة والتي بلغت قيمتها (18.5)، كما ينصح وجود فرق دالة إحصائيا بين متوسط درجات القياس البياني والبعدي في متوسط (الнуть قبض - بسط) ومعجم قيم هذه الفروق هو قيم أكبر من قيمة L.S.D المحسوبة والتي بلغت قيمتها (16.4)، مما ينصح وجود فرق دالة إحصائيا بين متوسط درجات القياس البياني والبعدي في متوسط (النيتر المدى الحركي) ومعجم قيم هذه الفروق هو قيم أكبر من قيمة L.S.D المحسوبة والتي بلغت قيمتها (12.3)، مما ينصح وجود فرق دالة إحصائيا بين متوسط درجات القياس البياني والبعدي في متوسط (النارئ المدى الحركي) ومعجم قيم هذه الفروق هو قيم أكبر من قيمة L.S.D المحسوبة والتي بلغت قيمتها (6.8)، مما ينصح وجود فرق دالة إحصائيا بين متوسط درجات القياس البياني والبعدي في متوسط (النارئ المدى الحركي) ومعجم قيم هذه الفروق هو قيم أكبر من قيمة L.S.D المحسوبة والتي بلغت قيمتها (0.44) (1.0).

ويعزو الباحث هذه النتيجة إلى أن استخدام أجهزة الإيزوكرنتاك يعطى للمجموعات العضلية فرصة العمل بالقصي قدضة للقياسات في جميع مراحل الأداء، وأيضاً إمكانية التحكم في السرعة والزاوية خلال المدى الحركي.

ويبرز الباحث أن أجهزة الإيزوكرنتاك تؤدي إلى آداء أفضل في انتاج القوة والقوة وتسهيلها، وذلك يعتمد على إمكانية التحكم في الزاوية والسرعة خلال المدى الحركي المطلوب بالإضافة أنها تعمل على زيادة مقدرة العضلات على الانقباض بمعدل أسرع أكثر تجويرا خلال مدى الحركة في الفصل.

و هذا يتفق مع ما أشار إليه عبد العزيز النمر وناريمان الخطيب (2000م) أن التدريب بسرعة زاوية ثابتة تتميز بأنها تمكن العضلات من إنتاج القوة القصوى خلال المدى الحركي الكامل للفصل المراد تطوريه، وإذا آمنة وتعمل على توفير الوقت والجهد ولا تستغرق وقت لتغيير المقاومات (8:26).

وعلى أنه تم استخدام أقصى قدر من القوة أثناء كافة المسار الحركي.

ويؤكد ذلك ما توصل إليه لي بورن (Lee E. Brown) (1999م) (11) من خلال دراسة استخدام أجهزة الأيزوكيتكت تحسن القدوة والقوة (ال المنتدىيات الأيزوكيتكتية).

ويشير الباحث إلى أن تلك النتائج انتقدت تماماً مع ما توصلت إليه نتائج الدراسة الحالية، مما يؤدي فائعة التدريب في الأيزوكيتكته في التأثير بشكل إيجابي في تطوير المتغيرات الإيزوكيتكتية والمستوى المهاري للاعاية الكرة الطائرة.

ويتضح من الجداول رقم (1، 2، 3) والخاص بالنسبة للقوة النموية النتائج بين القياسين القبلي والباني، القبلي والبعدي، الباني والبعدي في نتائج قياس المتغيرات قيد البحث لأفروحة عينة البحث، حيث توضح أن هناك تباين في نسب التغير المذكرة، حيث تراوحت نسبة التغير المذكرة في متغير عزم الدوران بين القياسات المختلفة هي (10.90% : 0.75%) وتراوحت نسبة التغير المذكرة في متغير قوة الدوران بسمت هي (13.12%) : (0.87%)، كما يوضح أن نسب التغير المذكرة في متغير عزم الدوران بالنسبة للجسم بسط فنجد أن نسب التغير المذكرة هي (12.12%) : (0.87%)، ونسبة عزم الدوران بالنسبة للجسم بسط فنجد أن نسب التغير المذكرة هي (12.12%) : (0.87%)، ونسبة عزم الدوران بالنسبة للجسم بسط فنجد أن نسب التغير المذكرة هي (12.12%) : (0.87%)، ونسبة عزم الدوران بالنسبة للجسم بسط فنجد أن نسب التغير المذكرة هي (12.12%) : (0.87%)

وعلى الالتباس النموذج الافتراضي في نسب القدوة في القياسات المختلفة قد البحث إلى أسلوب التدريب الإيزوكيتكتي والذي يتميز في إدخال CPPجوة إجابة سرعة حركة مصغرة الذائبة على طول الزمني الحرفي، وذلك يرجع إلى أن اللاعب أثناء الإداء على الجهاز يكون أكثر قدرة على إخراج القوة كلا آليت مركبة من نهايتها.

ويتضح من الجداول رقم (1، 2، 3) والخاص بالنسبة للقوة النموية النتائج بين القياسين القبلي والباني، القبلي والبعدي، الباني والبعدي في نتائج قياس المتغيرات قيد البحث لأفروحة عينة البحث، حيث توضح أن هناك تباين في نسب التغير المذكرة، حيث تراوحت نسبة التغير المذكرة في متغير عزم الدوران بين القياسات المختلفة هي (10.90% : 0.75%) وتراوحت نسبة التغير المذكرة في متغير قوة الدوران بسمت هي (13.12%) : (0.87%)، كما يوضح أن نسب التغير المذكرة في متغير عزم الدوران بالنسبة للجسم بسط فنجد أن نسب التغير المذكرة هي (12.12%) : (0.87%)، ونسبة عزم الدوران بالنسبة للجسم بسط فنجد أن نسب التغير المذكرة هي (12.12%) : (0.87%)، ونسبة عزم الدوران بالنسبة للجسم بسط فنجد أن نسب التغير المذكرة هي (12.12%) : (0.87%)

وعلى الالتباس النموذج الافتراضي في نسب القدوة في القياسات المختلفة قد البحث إلى أسلوب التدريب الإيزوكيتكتي والذي يتميز في إدخال CPPجوة إجابة سرعة حركة مصغرة الذائبة على طول الزمني الحرفي، وذلك يرجع إلى أن اللاعب أثناء الإداء على الجهاز يكون أكثر قدرة على إخراج القوة كلا آليت مركبة من نهايتها.

الاستنتاجات:

في ضوء أهداف البحث وفرضيتي البحث، واستنادا إلى ما أظهرته نتائج البحث توصل الباحث إلى الاستنتاجات التالية:

- أن التدريب الايزوكينتيكي له تأثير إيجابي على جميع المتغيرات الإيزوكينتية قيد البحث والمتمثلة في عزوم الدوران قبض - قوة عزوم الدوران بسط - عزوم الدوران بالنسبة للجسم قبض - عزوم الدوران بالنسبة للجسم بسط - الشغل قبض - الشغل بسط - المدى الحركي.

- أن التدريب الايزوكينتيكي له تأثير إيجابي على اختبار الضررب الساحق من مركز (4) في مركز (1) قيد البقية والمتمثلة مهارة الضررب الساحق.

- وجود فروق دالة إحصائياً لصالح القياس البعدي مقارنة بالقياس القبلي والبليئي في جميع المتغيرات قيد البحث.

الوصفات:

بالنسبة للمؤسسات المعنية:

- الاستعداد من نتائج الدراسة من خلال عقد ندوات ودورات صقل وورش عمل تتعلق بالجهاز الحديث في مجال التدريب.

- ضرورة الاهتمام بإنشاء معايير لتقييم الأداء العضلي (الأيزوكينتية) (Iso Kinetic).

بالنسبة للباحثين:

- إجراء دراست تحليلية (تقييم الأداء العضلي) على مفاصل ومدى حركي مختلف.

- إجراء أبحاث تحليلية مقارنة ما بين الرياضات المختلفة في المتغيرات الإيزوكينتية.

- إجراء أبحاث تعتمد على التزامن بين القياس الايزوكينتيا والنشاط الكهربائي.
المراجع العربية:

2. السيد عبد المقصود (1997م) : نظريات التدريب الرياضي "تدريب وفسيولوجيا القوة " مركز الكتاب للنشر، القاهرة.
4. بسطوسي أحمد (2004م) : أسس تنمية القوة العضلية في مجال الفعاليات والألعاب الرياضية مركز الكتاب الحديث للنشر، القاهرة.
5. جبرد هوجوث (1987م) : الميكانيكا الحيوية وطرق البحث العلمي للحركات الرياضية، ترجمة كمال عبد الحميد، مراجعة سليمان علي حسن، ط 3، مركز الكتاب للنشر، القاهرة.
7. طلحة حسام الدين (2014م) : أبحاثات علمات القيادة علم الحركة علم الحركة الوظيفي، الكتاب الحديث للنشر، القاهرة.
8. عبد العزيز أحمد النمر، نايرمان الخطيب (1977م) : القوة العضلية "تصميم برنامج القوة وتنظيم للموسم التدريبي، الاستاذة للكتاب الرياضي، القاهرة.
10. محمد رضا حافظ الروبي (2003م) : الموسوعة التعليمية للاعبة الرومانية، ما هي الخدمات الكمبيوتر، الإسكندرية.
11. محمد صبيحي حسانين (2001م) : القياس والتقييم في التدريب الرياضية، ط 1، دار الفكر العربي، القاهرة.
13. cale-benzoor m, albrt m, grodin a, wooduff l d (1992): Isokinetic trunk muscle performance characteristics of classical ballet dancers journal of orthopaedic and sports physical therapy 15 : 99 – 105
17. grabiner m d, jeziorowaki j j (1992): isokinetic trunk extension discriminates uninjured subjects from subjects with previous low back pain clinical biomechanics 7:195 – 200
21. marras w s, ferguson s a, simon s r (1990): Three dimensional dynamic motor performance of the normal trunk international journal of industrial ergonomics 6 : 211- 224
25. reliability of biodex isokinetic trunk values jospt 15 (1) :46 1992 (abstract) Biodex #93 – 195
26. rowinski m j, mcgorry r (1992): Lift simulation . evaluation and management, shirley, new york
27. rowinski, mj, et al. (1994): Relation of trunk extension torque to lift performance in young adults #91 – 192
28. saal j s, lerman r m, keane j p (1990): Objective assessment of lumbar spine function. Critical reviews in physical medicine and rehabilitation 2: 25 – 38
29. stokes i a f, gookin d m, reid s, hazzard r g (1990): Effects of axis placement on measurement of isokinetic flexion and extension torque in the lumbar spine. Journal of spinal disorders 2: 114 – 118
31. zeevi dvir (1995) : isokinetics muscles testing . Interpretation and clinical applications (2nd ed.) ,Churchill livingstone

ثالثًا: مواقع الشبكة الدولية للمعلومات (الإنترنت):

32-http://thefreedictionary.com
33-http://www.researchgat.com